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Abstract
This article develops an analytical and methodological field guide for studying the mundane practices that constitute machine 
learning systems. Drawing on science and technology studies (STS), I move beyond the opacity/transparency dichotomy that 
has dominated critical algorithm studies to examine how machine learning is assembled through everyday work. Rather than 
treating algorithms as black boxes or magical entities, I focus on four empirical moments of translation—feature extraction, 
vectorization, clustering, and data drift—where technical work becomes political choice. By ethnographically attending to 
practitioners' tinkering, negotiations, and valuation practices in these moments, we can trace how classification systems are 
constructed and stabilized. This approach allows us to ask: How are particular features of the world selected as relevant for 
prediction? Through what practices are people and phenomena translated into mathematical vector spaces? How are tem-
poral assumptions encoded in data? By studying these mundane processes of construction, we can understand how machine 
learning systems enact particular ways of seeing, classifying, and predicting the world. This field guide thus contributes 
methodological tools for analyzing how the politics of machine learning is assembled in practice, opening analytical space 
for critical engagement beyond calls for transparency or fairness.

Keywords  Machine learning ethnography · Data practices · Algorithmic assemblages · Moments of translation · Critical AI 
studies · Science and technology studies

1 � Making AI mundane: general analytical 
problems

“Change the instruments, and you will change the 
entire social theory that goes with them” (Latour 2010, 
153).

In the social sciences today, there is an ongoing debate 
about how to approach algorithms, artificial intelligence, and 
machine learning as analytical objects. 1Sometimes, algo-
rithms are proclaimed to be black boxes whose inscribed 

logics are impossible to scrutinize and understand (Pasquale 
2016), or that “[t]here may be something in the end impen-
etrable about algorithms” (Gillespie 2014). Their opacity of 
machine learning often being argued to be even more severe 
than other algorithms (Burrell 2016, 10).2

However, the worry about the impenetrability of algo-
rithms and machine learning—understanding algorithms 
as a black box—has also been argued to “prevent research 
more than encouraging it” (Bucher 2016, 84). The magi-
cal discourse surrounding machine learning shielding their 
creators from social scrutiny (Campolo and Crawford 2020). 
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1  This title is of course a wink to (Martin and Lynch 2009).
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Many have asked how we can productively move away from 
algorithms understood as neatly bounded technical objects—
black boxes—that can be “opened” (cf. Ananny and Craw-
ford 2018; Geiger 2017; Lee 2021).

This tension around the black boxed algorithm is based 
on a tendency to reify the objects of computer scientists, 
so they seem to be stable objects that just exist—having an 
“uncontroversial thingness” (Suchman 2023)—even though 
the objects algorithm or machine learning is just as negoti-
ated as any other object (Suchman 2023; Lee 2021; Muniesa 
2019)—much like bush pumps (de Laet and Mol 2000) or 
bicycles (W. B. Bijker 1995).3

This article proposes to move away from this analyti-
cal deadlock by outlining some ways to make the opaque 
magic of machine learning mundane through focusing on 
the practices of their construction. The article asks: how can 
we make sense of the construction of machine learners in 
practice? Which moments, situations, or practices make the 
politics and practices of machine learning visible? Where 
do actors make choices about how machine learners should 
predict and classify the world?

These types of questions are not new in the social study 
of science and technology. By learning from a deep well 
of studies in the field of science, technology, and society 
(STS), the article outlines some moments where the politics 
of machine learning is possible to study in practice, and 
offers some strategies for analyzing and understanding the 
practices and politics of machine learning. The aim is to help 
open up a methodological and analytical space for studying 
the practices and politics of machine learning classification 
(cf. Bowker and Star 1999; Bechmann and Bowker 2019; cf. 
also Martin and Lynch 2009).

To achieve this aim, the article suggests some situations 
where the classification work of machine learners can be 
made mundane, where tinkering happens in practice, where 
the opaque magic of machine learning turns into mundane 
engineering work. By approaching machine learning as 
mundane practice—work, tinkering, and engineering—the 
article aims to provide a methodological and analytical strat-
egy that bypasses some of the hype around machine learning 
(cf. Ziewitz 2016; Neyland 2018).

1.1 � The ethnography of machine learning 
is non‑trivial

The activity of creating black boxes, of rendering 
items of knowledge distinct from the circumstances 

of their creation, is precisely what occupies scientists 
the majority of the time. The way in which black box-
ing is done in science is thus an important focus for 
sociological investigation.
(Latour and Woolgar 1986, 259)

The ethnography of algorithms and machine learners 
is non-trivial methodologically (cf. Star 1999; Latour and 
Woolgar 1986). Understanding algorithms and machine 
learning in practice is complicated by a myriad factors 
which have been cataloged and lamented extensively, they 
are secret, they are difficult to understand, sometimes our 
informants do not understand what is happening, they may 
escape human comprehension, and so on (Burrell 2016; 
Bucher 2016; MacKenzie 2019; Lange et al. 2019; Seaver 
2022). There is a growing number of studies outlining tac-
tics, strategies, and sensibilities to study ethnographically 
these types of systems. For instance, Neyland (2018), Seaver 
(2022), and Jaton (2021b) have done long-term situated eth-
nographic studies of algorithmic work and grappled with 
how to engage machine learning algorithms in practice.

Still, just like in other ethnographic work, it is a chal-
lenge to understand and analyze our interlocutors’ practices. 
However, this difficulty of analyzing practices is not a unique 
feature of black boxed algorithms or machine learning, but 
a difficulty in dealing with all activity in the world. Anthro-
pology for instance has long reflected on how to approach 
a modern, global, and interconnected world through multi-
sited ethnography (Marcus 1995), polymorphous engage-
ment (Gusterson 1997), global flows (Appadurai 2003), or 
networks (Burrell 2009). In a telling reflection on the intel-
ligibility of a “crowded, noisy city street scene, where differ-
ent languages, different cultures, diverse social microworlds, 
and discordant frames of meaning are all thrown together in 
the normal course of things” Ferguson (1999, 208) writes:

Here, there is much to be understood, but none of the 
participants in the scene can claim to understand it all 
or even to take it all in. Everyone is a little confused 
(some more than others, to be sure), and everyone finds 
some things that seem clear and others that are unintel-
ligible or only partially intelligible. (Ferguson 1999, 
208)

Perhaps, much like the modern city scene that Ferguson 
describes, the study algorithms and machine learning is one 
of these areas—where it is thorny for an ethnographer to 
grasp the object at hand. But maybe not only because the 
algorithms are impenetrable black boxes, but also because 
the work of observing cultures and societies is an exercise in 
the humility of making situated knowledge (Haraway 1988).

3  Avoiding this reification, some have proposed that we need to treat 
algorithms as culture—not as “technical rocks in a cultural stream” 
but just as more eddies in that cultural brook (Seaver 2017, 5). That 
we should approach them as quasi-objects (Lange et  al. 2019). As 
heterogeneous assemblages—as collectives of human and non-human 
actors (Ananny and Crawford 2018).
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1.2 � Classification and machine learning as practical 
work and tinkering

“Once an item of apparatus or a set of gestures is estab-
lished in the laboratory, it becomes very difficult to 
effect the retransformation into a sociological object.”
(Latour and Woolgar 1986, 259)

Much of the critique against the black boxed and hard-
ened conceptualization of algorithms and artificial intelli-
gence has been in dialog with actor-network theory (ANT) 
(Gillespie 2014; Bucher 2016; Seaver 2017, 2022; Ananny 
and Crawford 2018; Muniesa 2019; Lee 2021). Importantly, 
in ANT, the notion of the black box has never been meant to 
criticize an object which is inscrutable for the analyst, but 
an object that our interlocutors—not the analyst—treat as a 
set of inputs and outputs (Latour 1987; 1993).

Accordingly, the proliferation of black boxes in society 
has been used as a starting point for further investigation 
in ANT—not a lamentable endpoint (cf. Callon and Law 
1995). One of the core tenets of actor-network theory has 
been to see black boxes as an opportunity to scrutinize the 
work, actors, and processes that make these seemingly self-
evident objects appear as a stable and static entities in prac-
tice (Latour 1987). For an ethnographer of AI drawing on 
ANT sensibilities, the act of proclaiming that we live in a 
black box society should be a call to arms to study these 
black boxes.

How do we then approach machine learning as an analyti-
cal thing in an advanced digital and socio-technical society? 
Machine learning is made to work through mundane engi-
neering work, and more specifically a combination of work 
on data, mathematics, statistics, and programming work. At 
its simplest, a machine learner attempts to use a set of meas-
urable quantities—data—to predict how they affect other 
measurable quantities—other data. It is sometimes described 
as finding approximations of functions (Mackenzie 2017, 
81–83). That is, a set of mathematical, computational, and 
statistical techniques that are used to find a (sometimes very 
complex!) function that can describe a dataset. In essence, 
machine learners are trained on big sets of data, to find 
mathematical functions that can describe the datasets, and 
produce predictions from the sets of data they were given.

In practice, this process is not magical. It is not solely 
data-driven, solely statistical, solely mathematical, or solely 
computational—on the contrary, it is very messy and practi-
cal and includes all these elements (cf. Latour 2011). This 
means that there is an abundance of mundane work and 
tinkering involved in making a machine learning model 
work. Teaching a system to classify or train it to perform 
“better than a human” means tinkering with what desired 
output means (Bechmann and Bowker 2019; Henriksen and 
Bechmann 2020). To teach a machine about the world the 

world, it is sometimes bounded to a “ground truth” dataset 
(Neyland 2018; Jaton 2017; 2021a). And to teach a machine 
learner how to classify and recommend music demands that 
an engineer listens to the machine as well as music to tweak 
it to our human tastes (Seaver 2022).

That is, there is a constant interplay between the machine 
learner, and its creators: As Seaver describes it: “perception 
is ‘in the loop,’ so to speak, and we could argue that ‘the 
neural network’ does not end at the computational nodes but 
extends to include [its creators’] own mind” (Seaver 2022, 
114). Indeed, to build an algorithmic system is to constantly 
tinker to reach some imagined—and sometimes elusive—
stabilization. To understand why a machine learning sys-
tem does what it does, we need to—just as with laboratory 
practices to construct facts—understand how these systems 
are constructed in practice (cf. Latour and Woolgar 1986; 
Latour 1987).

2 � Four moments of translation

Below, I bring to the fore four situations—inspired by Cal-
lon (1984), one might say four moments of translation, four 
moments of work, tinkering, and transformation—where 
actors work to construct and stabilize the machine learner. 
The four moments focus on what our interlocutors call “fea-
ture extraction,” “vectorization,” “clustering,” and “data 
drift.” As the themes are derived from practice, the actual 
moments of translation might in practice be infinitely dif-
ferent, but these are suggestions for empirical moments that 
might provide purchase in understanding how the magic of 
machine learners is put together.4

Importantly, I define these four moments in an emic 
manner: they are based on how the actors talk about, write 
about, organize, and work with the construction of machine 
learners. They are not clear-cut temporally, conceptually, or 
analytically, but are meant to provide inroads to engaging 
ethnographically and analytically with the construction of 
machine learners for prediction and classification. As these 
moments are defined by the actors, they provide both a lan-
guage to communicate with our interlocutors as well as a 
direction for ethnographic attention.5

4  These themes focus on the work of constructing machine learn-
ers in practice. Other possible moments of translation would be for 
instance attending to model evaluation (Jaton 2023). There are also 
whole fields of research that focus on the critical engagement with 
datasets (cf. Ciston 2023), which are a crucial part of understanding 
the politics that precedes the machine learner. In this field guide, I 
focus on the tinkering to make the machine learner—but the datasets 
are of course crucial for making the machine learning magic happen.
5  However, they also risk becoming analytical jails that reify our 
analyses and limit our understanding of the work that is done in prac-
tice.
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2.1 � Feature extraction: translating data into objects 
with features

The first moment of classification deals with what our inter-
locutors call feature engineering, feature extraction, or fea-
ture selection. This moment of translation might be thought 
of as the moment when the actors start relating to what they 
call data that need to be transformed—tinkered with, sliced 
and diced—for a particular machine learning application, 
with particular objectives and goals. During this moment, 
actors work to transform data into sets of objects that have 
what they call “features.” In practice, working with feature 
selection is often an iterative process oscillating between 
selecting features and testing the predictive qualities of the 
model. One thus has to select among the features, which 
ones are worth looking for and which are not.

This process of tinkering with data to create features 
involves transforming what the actors sometimes define as an 
“observable phenomenon’s measurable property” into some 
type of symbolic system that can be digitized and computed 
(“What Is Feature Vector? Role in ML & Applications,” 
2024). For example, the height of a person can become a 
feature in the form of a number representing the height in 
centimeters, “178,” while the gender of a person might be 
turned into a feature in the form of the word “female.”

An object in machine learning can in theory have an infin-
ity of features—often there are thousands of features that 
can be relevant. For instance, the features of a person-object 
in machine learning could include various medical records, 
medical test results, their DNA, their grades, diplomas, and 
certifications, their online behavior, their tax information, 
their travel history, address, email, their payment history, 
loans, what they buy, what kind of car they drive, their insur-
ance coverage, etc. The list can be made infinite. Accord-
ingly, there are potentially as many different techniques for 
transforming data into objects with features as there are fac-
ets of the world.

2.1.1 � The curse of dimensionality and the cost of features

In machine learning practice, it is understood that each addi-
tional feature of an object adds a dimension to the data-
set. Thus, an object with three features is said to have three 
dimensions. Datasets that have objects with a multitude of 
features introduces various statistical problems for the engi-
neers of machine learning, and is sometimes referred to as 
the “curse of dimensionality.” The curse of dimensionality 
is identified as a central challenge in machine learning and 
statistics more generally. It means that the possible combi-
nations and permutations of correlations are exponentially 
multiplied in high-dimensional spaces.

The curse of dimensionality is compounded in a world 
with almost infinite amounts of data, where the possible 

dimensions seem endless. Some describe it as an “affliction” 
suffered by predictive systems, resulting from too many fea-
tures being added to the observed entities (“Curse of Dimen-
sionality,” 2024). Objects often become high dimensional in 
a world of overabundant data. This means that there is an 
overabundance of features that are ascribed to the objects 
that are under scrutiny.

The potential overabundance of features about different 
objects is why the reduction of dimensionality—the tinker-
ing with and choice of what are the essential features of an 
object—is a crucial practice in statistics and machine learn-
ing. First, each dimension adds a cost to the computation. 
The training of the model becomes slower and more costly 
as the dimensions increase. The reduction or compression of 
dimensions hinges on the reduction of the “feature space”—
the removal of features and thereby dimensions—to simplify 
a complex dataset. Second, each dimension might add or 
subtract to the predictive power of the resulting machine 
learning model.

Feature selection can involve expert knowledge about 
which features are understood as being most important for 
prediction, as well as computational techniques for evalu-
ating which features turn out to be most predictive in a 
machine learning model. For example, when predicting the 
optimal move for a chess piece it would perhaps seem to 
be unnecessary to look for players’ blood pressure, while 
ignoring this information or classifying it as noise or nor-
mal in public health monitoring might be a severe mistake 
(cf. Chandola et al. 2009). There are several ways to choose 
which features are important for prediction. For instance, by 
constructing decision trees to rank features.

2.1.2 � Local taxonomies for the twenty‑first century

How can a social scientist then understand and analyze the 
practices and politics of feature selection? One way in which 
we might de-mystify this process as a social object is by 
thinking through historical practices of classification. For 
instance, the practices and politics of feature selection can 
be said to be related to the practices of classification that 
Foucault (2007) and Desrosières (1998) has written about 
when analyzing classification in natural history. Desrosières 
has observed the contrast between Linné’s classification sys-
tem which was based on particular fixed criteria that formed 
the basis for his classification system, and Buffon’s system 
of classification which was based on comparison and a flex-
ible approach to which traits were relevant for distinguishing 
species.

Of all the features available, Linné chose certain 
among them, and created his classification on the basis 
of those criteria, excluding the other traits. [...] For 
Buffon, on the other hand, it seemed implausible that 
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the pertinent criteria would always be the same. It was 
therefore necessary to consider all the available dis-
tinctive traits a priori. (Desrosières 1998, 241)

The local classification and comparison of exemplars 
that Buffon proposed—which compared species based on a 
locally applicable and flexible approach to classification—is 
reminiscent of the “feature selection” practices in machine 
learning. Just as Foucault describes the systematic observa-
tion of natural history and taxonomy, machine learning engi-
neers—through the selection of features—produce particular 
and local boundaries and discontinuities between objects: 
“To observe, then, is to be content with seeing—with seeing 
a few things systematically.” (Foucault 2007, 146).

Just as Linné and Buffon chose particular visual and 
quantifiable “features” as the basis for his classification 
project, machine learning experts choose particular ways of 
quantifying the world. The selection of features and dimen-
sions constitute a complex politics of selection—where the 
selection of features of objects are decided through statisti-
cal techniques and particular choices. These techniques and 
choices define the conditions of possibility for classification, 
prediction, and decision making—and therefore creates the 
conditions of possibility for objects that are classified and 
constructed in machine learning.

As ethnographers of machine learning, we can observe, 
and ask our interlocutors about what becomes chosen as 
“relevant” features in the practices of designing machine 
learning systems. We can ask about what makes up a “char-
ismatic” feature, the features that are included, because they 
“should” be predictive. We can also observe which features 
are seen as “naturally” predictive of particular phenomena 
(Bowker 2000). Observing practices of feature selection 
holds the promise of bringing to light some politics of clas-
sification and prediction for the machine learning age.

Building on these insights, the social analyst of machine 
learning can ask several questions about the politics of 
“features.” For instance, we can ask about how features are 
chosen, engineered, and deemed relevant for prediction. On 
what grounds are they chosen as relevant? Conversely, we 
can ask how features are excluded and deemed irrelevant. By 
paying attention to the practices and politics of feature selec-
tion, we might gain insight into how the “art and science” of 
feature selection fuses preconceived notions of what is seen 
as characteristic of a phenomenon with the objectivizing 
mathematics of machine learning prediction.

2.2 � Vectorization: from “features” to “vectors” 
and “tensors”

Machine learning is a mathematical endeavor. Transforming 
the world into mathematical, calculable, and quantified enti-
ties is therefore another of the central activities of making 

machine learning. One of the most important techniques for 
constructing machine learners is vector mathematics, which 
is one of the dominant ways in which machine learners are 
constructed today. Vector mathematics is understood as an 
easy and intuitive way to represent data for programmers. 
Vectors are also easy to apply basic mathematical operations 
on. It is possible to add, subtract, divide, and multiply vec-
tors. In addition, there exists specialized and cost-effective 
hardware—Graphical Processing Units—that can make vec-
tor calculations quickly and efficiently.

The application of vector-based machine-learning tech-
niques is based on making several transformations, from 
“raw data” into “features” and then from “features” into 
mathematical objects with names, such as “scalars,” “vec-
tors,” and “tensors.” This means that an object’s “features” 
needs to be transformed into numerical form (numbers are 
often called scalars in machine learning contexts) to be use-
ful for the machine learning model. “Whatever data you need 
to process—sound, image or text you must turn them into 
integers [i.e., whole numbers] […] which is called data vec-
torization” (Patidar 2019). Vector-based machine learning 
thus depends on quantifying the world—making any object 
in the world into an array of numbers that can be treated with 
mathematical, statistical, and computational techniques.

When using a vector-based machine learning model, 
an object’s “features” are “extracted” from “raw data” and 
transformed into scalars. Several scalars can then be com-
bined into mathematical objects with several dimensions 
that are called “vectors” or “tensors.”6 A vector is a com-
putational and mathematical concept that is often used in 
machine learning to describe how an object can have several 
features. For instance, a person-object might be described 
with several vectors containing weight, height, and age.7 
Several person-objects would form a matrix with each per-
son-object contained in a column with vectors, and each 
new column describing a new person-object with specific 
vectors. Additional dimensions can be added to the vector 
space forming “tensors” that can have several dimensions.

2.2.1 � Seeing the world as a vector space

The transformation of the world into numbers involves 
choices of what to quantify—which “features” to quantify—
as well as how to quantify them—how to transform the world 
into numbers, scalars (real numbers), vectors, matrixes, and 
tensors. These transformations of the world into scalars, 

6  A tensor is a concept that describes the relationships between dif-
ferent scalars or vectors.
7  Vectors and tensors are mathematical objects that combine several 
scalars for which there exists efficient (computationally inexpensive) 
mathematical techniques that—by way of their efficiency—are good 
for machine learning purposes.



6140	 AI & SOCIETY (2025) 40:6135–6148

vectors, and vector spaces also come to embody and spread 
specific ways of seeing and understanding the world.

Through the transformation of “features” into “scalars,” 
the properties of features become translated into a math-
ematical world of continuous numbers that can be trans-
lated to coordinates in a multidimensional Cartesian coor-
dinate system. The multidimensionality of this coordinate 
system—each quantified feature adding another dimension 
to the coordinate system. Through vectorization, the world 
becomes translated into vector spaces. Thus, one of the 
things that machine learning does is propagate particular 
ways of handling, dissecting, and quantifying the world.

2.2.2 � Seeing the world as a multidimensional Cartesian 
space

When using a vector-based model, songs, language, DNA, 
and medical diagnoses all need to be transformed into coor-
dinates in a space (cf. Seaver 2021). For machine-learning 
modelers, vectorization entails a particular way of thinking 
about the world. For instance, in a manual about applied 
text analysis, the authors propose a shift in how one thinks 
about language:

For this reason, we must now make a critical shift in 
how we think about language—from a sequence of 
words to points that occupy a high-dimensional seman-
tic space. Points in space can be close together or far 
apart, tightly clustered or evenly distributed. Semantic 
space is therefore mapped in such a way where docu-
ments with similar meanings are closer together and 
those that are different are farther apart. By encod-
ing similarity as distance, we can begin to derive the 
primary components of documents and draw decision 
boundaries in our semantic space. (Bengfort et al. 
2018, chap. 4)

The practice of vectorization thus not only propagates 
a practice of quantifying features to make them amenable 
for computation, but also spreads particular geometrical and 
spatial ways of thinking about the objects that the machine 
learners are set to analyze.

The practices and politics of vectorization are possible 
to study ethnographically. They entail making technical 
and epistemological choices in how to translate the world 
into scalars and vectors. There are numerous techniques 
for transforming the world into vectors, and they involve 
choices in how data become translated into suitable formats 
for machine learners. These practices of vectorization also 
involve a politics of quantification—how is the world quanti-
fied, by whom, based on what criteria?

2.2.3 � Data that do not fit a vector space: the challenge 
of nominal data

For instance, one of the recurring challenges in machine 
learning is to transform categorical and nominal data—data 
that do not have an ordered or hierarchical relationship like 
numbers do—into numbers that do have an ordinal relation-
ship—data where objects can naturally be ordered. “There 
is no mapping from categorical to numerical values that is 
semantically meaningful” (Andritsos and Tsaparas 2010, 
154). Much things in our world are nominal and do not have 
an inherent or apparent order, such as medical diagnostic 
codes (ICD codes), types of rocks, ethnicity, or names of 
people.

Representing nominal data in terms of vectors means 
translating for instance ethnicity or gender—which has no 
inherent ordinal relationship—into a scalar—where the 
numbers have an inherent ordinal relationship. Represent-
ing nominal values in the form of a vector creates ordered 
relationships between objects that might not exist. What 
is the ordinal relationship between different ethnicities or 
genders? Translating nominal data into vectors therefore 
introduces particular mathematical relationships between 
entities.

A constant struggle in the application of machine 
learning is how images, text, DNA, or medical codes can 
be transformed into numbers that machine learners can 
handle. For instance, the International Classification of 
Diseases (ICD-10) has around 70,000 codes for differ-
ent ailments, and is applied by human coders that apply 
their own standards for classification when they apply 
these codes (Kaur et al. 2021; cf. also Lee 2022a). The 
practices of mathematization and vectorization enact a 
quantified world, reminiscent of Descartes and Leibniz 
philosophies, where all phenomena are possible to trans-
late into numbers.

2.2.4 � The politics and practices of vectorization

However, as sociologists of machine learning, there are 
numerous places where choices are possible to study—to 
open the black box of vectorization. As ethnographers of 
machine learning, we can ask several questions about vec-
torization building on work in sociology and STS: What 
dilemmas and difficulties of transforming the world into 
numbers and spatial thinking do our interlocutors face? 
What tools and algorithms do they use? How do they 
transform non-numerical things—such as nominal data—
into vectors in a space? What challenges arise? How do 
actors’ work to make features and vectors commensurate 
(Espeland and Stevens 1998)? What features and objects 
are included and excluded when the world is made into 
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vectors (Lee 2022b)? Are there objects or features that 
are more difficult to vectorize, and which therefore are 
excluded from the machine learning model by the actors? 
What metadata is included in the vector space (Edwards 
et al. 2011)?

In essence, vectorization can be approached through the 
lens of actors’ practices to translate the world into “raw 
data,” into “features,” and then into “vectors” in high-dimen-
sional spatial representations. Like all translation, there is 
not complete fidelity. After all, to translate is to betray (Law 
1997). Attending to actors work to transform the world into 
vectors promises to open up their choices, valuations, dilem-
mas of vectorizing, in short to open up the micro-politics of 
vectorization.

2.3 � Clustering: algorithms for boundary making

A third way in which we can approach ethnographically the 
practices of constructing machine learners is by attending to 
actors’ work to cluster their data in high-dimensional vector 
spaces. Cluster analysis is a common statistical technique 
that groups data points that are understood as being more 
similar to each other. Clustering has become important 
in machine learning as it allows an analysis of unlabeled 
data—data where humans do not tell the machine the char-
acteristics or classification of the data. In a world where the 
promised data deluge seems to have become a reality the 
need for unsupervised machine learning—where data are 
analyzed without human intervention—is becoming more 
and more common.

Just as in your run-of-the-mill statistical analysis, the pro-
cess of using cluster analysis in machine learning aims to 
group data in clusters. A cluster analysis can, for instance, 
be used to classify data in a binary manner (e.g., “yes” allow 
the loan, or “no” deny the loan), divide data into several 
groups, or to find anomalies in the data. For instance, it 
could be used to identify outliers in a dataset, or to group 
data into types.

Just as other machine learning techniques, clustering 
involves an iterative and practical process of choosing the 
clustering techniques that give actors’ their desired results. 
This iterative and practical process can be followed ethno-
graphically. In this section, we attend to the practices, tools, 
and techniques of clustering datasets—and in particular, we 
attend to actors work with algorithms for clustering.

2.3.1 � Dividing the world: working with clustering 
algorithms

Each clustering algorithm divides data in different manners, 
with different effects on the resulting clusters of objects. 
There is no inherent or optimal way of clustering data—
each dataset and application involved choices about what to 

cluster on and how. What works in one application, might 
not work in another setting. Furthermore, different clustering 
algorithms have different characteristics and assumptions 
built in.

For instance, clustering algorithms produce clusters that 
have different characteristics based on their ways of making 
the boundaries between clusters, some clustering algorithms 
demand that the number of clusters are specified in advance, 
and some algorithms are more sensitive to noise and outliers. 
Importantly, for the ethnographer, using certain clustering 
algorithms, the actors always make assumptions and choices 
about what is important in drawing boundaries between data 
points in a space.

Consequently, the actors’ iterative work to cluster data 
involves a politics of classification which can be studied in 
practice. As there is no natural or optimal algorithm that 
works for every setting, the actors need to negotiate what 
a good clustering algorithm should entail. As Wikipedia 
describes the process, deciding on a clustering algorithm is 
fraught with difficulty:

Evaluation (or “validation”) of clustering results is as 
difficult as the clustering itself. Popular approaches 
involve “internal” evaluation, where the clustering is 
summarized to a single quality score, “external” evalu-
ation, where the clustering is compared to an existing 
“ground truth” classification, “manual” evaluation by a 
human expert, and “indirect” evaluation by evaluating 
the utility of the clustering in its intended application. 
(“Cluster Analysis” 2024)

In sum, actors must work to choose, adapt, tinker with 
clustering. This means valuing where good boundaries 
between classes should be drawn, as well as to negoti-
ate what the desired outcomes of the cluster analysis are. 
We can study these practices and politics of clustering 
ethnographically.

2.3.2 � Classification in a world with machine learning

Actors work to classify people, objects, and things through 
information infrastructures is a classic topic for the social 
study of classification. The work to construct systems of 
classification of various things, for instance, species, dis-
eases, or race have been the focus of intense scrutiny. In 
this moment, I want to highlight not only learning to see 
“features” but also actors work in practice of constructing 
systems of classification with machine learners. Each con-
struction of a cluster becomes the basis for classifying the 
world.

However, there are differences in how the systems of clas-
sification are constructed with the help of machine learn-
ers compared to the bespoke and manually constructed 
databases (Bowker 2000), standards (Edwards et al. 2011), 
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and systems of classification (Lee 2022a; Bowker and Star 
1999). In making a system of classification with machine 
learners, the actors’ work, tinkering, and practice seem to 
take on a different tenor. This is a difference in degree, not 
a difference in kind.

In constructing machine learners the actors’ work is 
not focused on dealing with the fate of individual people, 
objects, or boundaries, nor is it focused on delving into the 
correct design of the classification system (Bowker and Star 
1999). Rather the actors’ focus and work with constructing 
classifiers with machine learning seem to become focused 
on:

First, the constant valuation of what a successful clus-
tering algorithm should be, what it should be able to do, 
and how to measure its failure or success rate (cf. Lee and 
Helgesson 2020). The valuation of what a successful algo-
rithm is can vary within the same situation. These different 
evaluations can, for example, take the form of competitions 
between teams, or in a computer to select most successful 
algorithm based on some sort of measurement, it can take 
the form of dividing up the dataset you are working on, so 
it is successful both on the training data, and data that you 
set aside for testing, and it can take the form of identifying 
a “ground truth” dataset that you test against (Jaton 2017).

Second, actors work to handle the problematic cases of 
classification. Partly by removing problematic things from 
the data—i.e., data cleaning—and partly by tinkering with 
the selection and parameters of different clustering algo-
rithms to handle edge cases that are difficult to classify. The 
crucial point, again, is that the construction of a machine 
learner is not a black boxed process that happens magically 
without intervention of domain experts, programmers, or 
data stewards. The selection of a clustering algorithm is a 
situated process of tinkering and work by actors.

2.3.3 � Tinkering with the k‑means clustering algorithm

As I have pointed out above, each clustering algorithm 
brings with it specific challenges. One of the most well-
known and well-used clustering algorithms is k-means clus-
tering. This clustering algorithm works by trying to mini-
mizing the total distance between any number of clusters to 
the datapoints. It works to “partition the observations into K 
clusters such that the total within-cluster variation, summed 
over all K clusters, is as small as possible” (“RPubs—K-
Means Clustering Tutorial,” 2023). There are three central 
choices that the actors must make to make k-means clus-
tering work: first, the number of clusters that they want to 
divide the dataset into, second, where the search for cluster 
centers should start, and third how cluster variation should 
be defined mathematically—common choice being squared 
Euclidian distance (“RPubs—K-Means Clustering Tutorial,” 
2023).

K-means clustering is known to have several challenges. 
For instance, an online course on machine learning iden-
tifies five challenges in using the k-means algorithm for 
machine learning (“K-Means Advantages and Disadvan-
tages” 2022): the first challenge identified is that the actors 
must initially choose how many clusters are present in the 
dataset. This might be easy for certain datasets where it is 
easy to pre-identify clusters. In large and complex datasets 
with a lot of different “features”, it might be very difficult, 
if not impossible, to identify how many clusters the data-
set has. A second challenge is that k-means clustering is 
dependent on the initial positions given to the “centroids” 
of each cluster, which then spawns new technologies and 
techniques for “initializing” the algorithm (Celebi et al. 
2013). Furthermore, “k-means has trouble clustering 
data where clusters are of varying sizes and density.” All 
these challenges point to areas where actors need to make 
choices, tinker, and work with the algorithm.

However, the two last challenges identified in the course 
are perhaps most relevant in relation to this field guide, as 
they connect to classic questions and themes in science 
and technology studies.

One is that outliers in the data are problematic in 
k-means clustering, as “Centroids can be dragged by outli-
ers, or outliers might get their own cluster instead of being 
ignored” (“K-Means Advantages and Disadvantages” 
2022). The proposed solution in a google machine learning 
course is to remove outliers before the clustering algorithm 
is applied. That is, the solution is for actors to remove the 
things that do not fit into the clusters. The actors’ handling 
of that which does not fit into the classification systems 
is of course an important and classic topic in the study of 
the politics of classification systems: how are the things 
that do not fit into the grids of classification handled? Are 
they assigned to the “Other” category (cf. Bowker and Star 
1999)? Are they classified as abnormal or pathological 
(Canguilhem 1966; Foucault 2007)? Here, we as ethnog-
raphers of machine learning can find practices and work 
that can potentially have huge political consequences for 
how the world is put together with machine learning. What 
people, things, or phenomena become treated “outliers” 
and removed from the datasets? How are the decisions 
made to remove outliers made? What metrics (and which 
features) are used to decide if something is an outlier? 
Is there a discussion of the consequences? What are the 
possible consequences of not being part of that dataset?

Another is that the k-means algorithm has a difficult 
time in handling an increasing number of dimensions of 
a dataset, as “As the number of dimensions increases, a 
distance-based similarity measure converges to a constant 
value between any given examples” (“K-Means Advan-
tages and Disadvantages” 2022; Aggarwal et al. 2001). 
Thus, the problem is that the number of “features” of 



6143AI & SOCIETY (2025) 40:6135–6148	

your dataset makes it more difficult to discern differences 
between “objects.” This points us again toward the actors’ 
practices of feature selection, and the choice of what is 
relevant and important aspects of the world. Which of 
course involves more choices, tinkering, algorithms, and 
techniques for reducing dimensionality for the algorithm 
to output the desired results.

As ethnographers of machine learning, we can ask ques-
tion such as: How do actors decide what clustering algo-
rithms are desirable, and based on what criteria? On what 
criteria do the actors assess what a successful clustering 
is? Which features are possible to cluster with this specific 
technique? Machine learning is one of the new tools for clas-
sifying and ordering the world, and clustering is one of many 
techniques where a politics of classification can be studied.

2.4 � Data drift/concept drift: data and temporalities

The last moment that I want to highlight here relates to 
what our actors call “data drift” or “concept drift.” That is, 
the challenge that is posed to machine learners by the fact 
that the world is constantly changing. The world during one 
period might look very different to what it looks like during 
another period. For the actors that design machine learners, 
the constantly changing state of the world poses design chal-
lenges. Machine learners are often trained on a snapshot of 
data—and training a machine learning model is often the 
most expensive part of constructing a machine learner. Fre-
quently particular snapshot of the world as it is encoded in 
a model entails as much data as the actors can possible get 
their hands on within their projects’ constraints. However, if 
there is no sense of the temporality of the world, and the data 
that are collected, the machine learner might miss important 
patterns in an evolving dataset. This points our ethnographic 
sensibilities toward the practices of handling “data drift” and 
“concept drift.”

Machine learners exist in a changing world, where clas-
sification is in constant flux. This poses another challenge 
for machine learning. Another challenge in handling the 
rhythms and dynamics of data. This challenge is called “data 
drift” or “concept drift” in the parlance of machine learning, 
and points to the fact that phenomena in the world change 
over time. The changing nature of the world leads to chal-
lenges in designing machine learners and machine learning 
processes that can adapt temporally to the changing face of 
anomalies, abnormalities, and normalities. In one article, the 
problem is described in the following manner:

In an operational setting we face the additional dif-
ficulty that human behaviors are dynamic and what is 
considered “normal” behavior is likely to change over 
time. This problem is known in the machine learning 
community as concept drift, and requires a system that 

can dynamically update the user profile and classifica-
tion parameters (Lane and Brodley 1999)

The machine learner needs continuous work and updating 
to stay relevant. Thus, the machine learning system needs to 
be in constant flux and re-learning to handle how the world 
and its data changes. A concrete example is “fingerprint 
drift” where our fingerprints subtly change over time, so 
that the system needs to continuously re-learn what our fin-
gerprints look like.

2.4.1 � Shifting boundaries of abnormality

Some facets of classification in machine learning deal with 
the temporalities of anomalies. That is, in some machine 
learning applications, temporal changes in data are the basis 
for identifying something as anomalous. That is, “normal” 
and “abnormal” data change over time for instance in nature 
there are constant cyclical changes due to seasons, while 
on another time scale, changes in temperature might point 
to climate change. Here, the actors have assumptions about 
what time cycles and scales are relevant, and they need to 
work with and attempt to identify temporal dynamics in the 
data to detect anomalies.

For instance, if there is a sudden change in the character-
istics of a data stream, this could be treated as a signal that 
there is something anomalous happening. In other applica-
tions, it is acknowledged that the temporalities of data can 
also include “concept drift.” That is, the boundaries between 
the normal shift over time in a particular data stream. Rather 
than treating the world of data as something static, it is 
treated as a stream of ever changing rhythms and dynamics 
that need to be handled by the machine learner.

For instance, in a security application that attempts to 
identify anomalous network traffic, changes in the charac-
ter of the data stream over time are the basis for drawing 
boundaries between anomalous and normal data. The defini-
tion hinges on defining the anomalous as “abrupt changes” 
between data sampling intervals. In the quote below, the 
boundaries between abrupt change hinges on the sampling 
interval in the data stream. Thus, the anomalous becomes 
performed as abrupt temporal change in the analyzed data 
stream:

In statistical analysis, a network anomaly is modeled as 
correlated abrupt changes in network data. An abrupt 
change is defined as any change in the parameters of 
a time series that occurs on the order of the sampling 
period of the measurement. For example, when the 
sampling period is 15 s, an abrupt change is defined 
as a change that occurs in the period of approximately 
15 s. (Thottan and Ji 2003)
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In this example, anomalous data are identified through 
the rhythms and periods of the machine learner sampling 
intervals and the dynamic changes of the data stream. The 
boundary between the anomalous and the normal being 
dependent on the temporal configuration of the machine 
learner. Temporal changes in dynamics come to define the 
anomalous and normal. In this example, the power and poli-
tics of machine learning depend on configuring and erecting 
temporal boundaries through sampling intervals.

2.4.2 � The temporalities of data

The temporalities of data are crucial for knowledge pro-
duction. There are many temporal complexities in the con-
struction of datasets, and there are tensions between dif-
ferent temporalities and ways of thinking about how time 
moves when a dataset is constructed. How temporality is 
understood is encoded in databases and metadata, and it is 
reflected in how phenomena are analyzed and understood. 
For instance, in analyzing the presence or absence of species 
in habitats, it is sometimes assumed that data are cyclical, 
reflecting the yearly seasonality of ecologies (Lee 2021).

As Bowker (2005, 190-) has pointed out, thinking about 
how time moves can involve thinking about time as contin-
gent on grand historical events, such as meteor strikes or 
floods, it can involve thinking about time as cyclical com-
monly in climatology, or it can involve secular thinking, as 
change that occur over very long periods of time. It can also 
involve thinking about stasis and equilibrium versus a con-
stant state of change. In a dataset—in this case a biodiversity 
dataset—Bowker argues that:

As far as databases go is that there is no uniform way 
of separating off the data objects (which themselves 
enfold complex histories) from their spatial and tem-
poral packaging […]. As you nest cycles one inside 
the other, you find secular change irrupting into the 
story; as you nest secular narratives, cycles emerge. 
[…] The work of flattening out all the narrative sci-
ences into a single narrative timeline is a productive 
effort that articulates data formats with relative power 
relationships between disciplines—through the media-
tion of classification systems and data standards. The 
manipulable second nature created within the com-
puter is structured by an organizationally, politically, 
and morally inflected set of temporalities. (Bowker 
2005, 192–93)

The multiple temporalities that Bowker points out about 
biodiversity data have many resonances with machine learn-
ing actors’ struggles to practically handle the challenge that 
data drift and concept drift pose for their construction of 
prediction and classification. Just as the biodiversity data-
bases that Bowker deals with, the datasets that machine 

learners are trained on are treated by the actors as encod-
ing certain temporalities. For instance, facial recognition 
systems assume stability and stasis in time—while varia-
tion of ethnicity is hotly debated (Buolamwini and Gebru 
2018)—and fingerprint systems are commonly constructed 
to handle “drift.”

The temporalities of machine learners are also part of 
the politics of machine learners. In actors’ work and tinker-
ing with machine learners, we can expect there to exist a 
struggle with handling a variety of times and periodizations. 
And that there could exist struggles to handle these various 
temporalities of data. The actors’ work to handle the tempo-
ralities of the world and the datasets that they have collected 
about the world constitutes choices about what can be dis-
cerned by the machine learner. The assumptions about the 
temporality of datasets—contingent, cyclical, secular, in flux 
or in stasis—constitutes another facet of the conditions of 
possibility for the predictive politics of learning machines.

In approaching machine learners ethnographically, we 
can start to unpack the practices and politics of temporality 
in machine learning systems. We can ask questions about 
what temporalities are already encoded in the datasets that 
are used to train the learning machines. We can ask ques-
tions about how the actors struggle to mangle data into vari-
ous temporalities to produce the predictions that are desired. 
We can ask about how the actors reason about temporality, 
and about how they value the effect of different temporalities 
in relation to their assumptions about what the predictive 
capacities of the machine learner should be handling.

By paying attention to the practices and politics of tempo-
rality—that the data are for instance stable or in stasis—we 
might gain insight into how the actors perceive the world—
what is seen as the natural temporality of a phenomenon, and 
what politics does that temporality bring with it?

3 � Conclusion

Most important of all, what values and ethical principles 
do we inscribe in the inner depths of the built information 
environment (Star 1999, 379).

Today, learning machines are becoming ubiquitous. 
Machine learning models are implemented an increasing 
number of computer systems, software, and digital devices. 
From facial recognition and loan applications to network 
security and chatbots, machine learning is used to clas-
sify, predict, and make decisions. The power of learning 
machines in society seems to be steadily on the rise. How-
ever, contrary to the feeling of wonder and magic that often 
surrounds machine learning, the politics and practices of 
learning machines are mundane. There is a huge amount 
of work and tinkering by the people that make machine 
learners.
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In this state of being, it is becoming increasingly cru-
cial to understand these machines beyond the transparency/
opacity dichotomy, beyond the auditing of fairness and bias 
of algorithms, and beyond legal debates about algorithmic 
accountability. These perspectives are hugely valuable in 
highlighting the visible politics of the machine learning soci-
ety. However, they tend to simplify the politics of algorith-
mic assemblages into questions of how to change the algo-
rithm. The politics of algorithms risks becoming reduced to 
striving for unbiased and transparent computation (cf. Lee 
et al. 2023). In these perspectives—highlighting the fairness 
of the algorithm—agency seems to become punctualized to 
the machine learner and thus risks hiding the actors work 
and tinkering (cf. Callon and Law 1995). This in turn risks 
reproducing the machine learner as a Deus ex machina—a 
magical artifact where the politics of choice resides.

However, by pushing our ethnographic sensibilities to 
attend to the construction of machine learners in practice, we 
might get a glimpse of a more complex politics of machine 
learners, that goes beyond auditing, computational ethics, 
and fixing the algorithmic bias. By attending to actors’ mun-
dane practices of constructing machine learners, we can start 
delineating and understanding how the politics of these het-
erogeneous assemblages of machine learning is put together. 
As ethnographers, we can attend to actors’ work to classify 
and value the world through sweat, negotiations, tinkering, 
failures, and successes. We can start to understand how 
the actors’ decide in practice what a good machine learner 
should do (cf. Ziewitz 2011). Thus, the magic of machine 
learning evaporates in a mist of mundaneness, to highlight 
choice, valuations, and a lot of tinkering and work.

The crucial methodological and analytical move here is 
to move beyond the dichotomy where the machine learner 
is treated separate from the work of actors. This construc-
tivist perspective on technology draws on a decades long 
history. Just because our tools are shiny and new—and seem 
wondrous and magical—does not mean that they are magic. 
The insight that all technology is sociotechnical—insepara-
ble from society—is by now decades old (Bijker et al. 1987; 
Bijker and Law 1992).

A second analytical move—that this ethnographic sensi-
bility enables—is to attend to computation, calculation, and 
valuation as a practice, rather than treating them as separate 

from actors work. Just because our computers are no longer 
human nor huge mechanical machines, and just because our 
calculative and statistical practices have been combined into 
new assemblages of computation does not mean that they are 
not possible to pick apart with the analytical sensibilities of 
science and technology studies. The insight that calculation 
and quantification are political and closely intertwined with 
power are insights that have been developed in the social 
study of statistics and calculation (Gigerenzer et al. 1989; 
Hacking 1990; Porter 1995; Desrosières 1998).8

In studying the practices and politics of machine learners, 
we need to learn to reach forward toward a sometimes mysti-
fied technological present, while we embrace our analytical 
past where we have for decades turned our analysis toward 
the construction of facts, infrastructures, and technologies. 
We must re-learn to pay ethnographic attention to the magi-
cal tools of technology, to make them mundane again. We 
must train our analytical attention on the actors’ work and 
tinkering. Through actors’ practices, we will be able to 
understand some facets of the politics of machine learning.

The intent with this article has been to construct a meth-
odological and analytical field guide—a starting point—for 
ethnographers studying the construction of machine learn-
ing. This field guide is meant to direct our analytical gaze 
toward moments where practices and politics come to the 
fore, both in an empirical sense but also in an strategically 
analytical sense—with a concern for the politics of machine 
learners in society. Doing this, I wanted to draw out ques-
tions and issues that are emic concerns, concerns that our 
interlocutors deal with, but also etic concerns, concerns that 
we as sociologists of machine learning have about a society 
of machine learning. I aimed to make the opacity and magic 
of machine learning mundane, to lay the ground for asking 
questions about the practical politics of machine learning.

I wanted to open the door to ask questions about actors’ 
assembling of the politics of machine learning: how does the 
actors’ work, tinkering, and negotiations affect the construc-
tion of machine learners? How do actors include things, peo-
ple, objects, and phenomena in machine learners? How do 
the actors construct datapoints, dimensions, and features to 
be included and excluded in their making of machine learn-
ers? How do they translate the world into mathematics, and 
with what effects? How do the actors make decisions about 
how to group and classify the world into different catego-
ries? How do they think and enact temporalities? How do the 
actors divide the world into different timescales, and how do 
they think about and handle the nature of stasis and change?

By attending to these questions, we can start grappling 
with the politics of machine learning in earnest. How does 
the work of the actors shape how machine learners come to 

8  A third methodological and analytical possibility—which I have 
not highlighted in this particular account, as I have wished to demys-
tify the construction of machine learners rather than data and data 
work—is of course to attend ethnographically to data practices. Data 
studies also have a decades long history in science and technology 
studies, attending to the mundane work of constructing databases and 
datasets (Hine 1995; Bowker 2000; Hine 2006; Fujimura and For-
tun 2006). During the past decades, critical data studies exploded as 
more and more knowledge production is premised on huge datasets 
and databases (Leonelli 2009; Edwards et  al. 2011; Boellstorff and 
Maurer 2015; Douglas-Jones et al. 2021; Beaulieu and Leonelli 2022; Thylstrup et al. 2022; Ciston 2023).

Footnote 8 (continued)
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predict, classify, and enact the world? What becomes enacted 
as problematic? What is included? What is excluded? How 
are things, people, objects, and phenomena translated into 
the world of machine learners? And with what effects?

How can we then study the politics and practices of 
machine learning? Above I have suggested that we need to 
attend to the practices of constructing machine learners. I 
have also suggested that there are many insights, questions, 
and research problems in the study of science and technol-
ogy that can be applied to the ethnographic study of machine 
learning in practice. I have suggested that we can pay atten-
tion to four moments of translation where machine learners 
are constructed.

There are of course a myriad of other possible moments 
of translation highlight the politics of constructing machine 
learners. In developing this particular set of analytical sensi-
bilities, the ethnographer of machine learning can both learn 
from classic questions in science and technology studies, 
but of course from the work in critical studies of algorithms 
or data.

A critical lesson for the ethnographer of machine learn-
ing is to make the magic of machine learning mundane by 
attending to work, tinkering, negotiations, and valuations. 
By attending to the magic of machine learning as a practical 
concern, we can de-elevate the politics of machine learning 
for social analysis. The social facts of today are not made 
by magic. They are made in particular situations, by particu-
lar actors, with particular ideas about the world. Let us go 
forth and de-mystify the magic of machine learning, to bring 
political agency back where it belongs.
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